Effects of structure of anodic TiO(2) nanotube arrays on photocatalytic activity for the degradation of 2,3-dichlorophenol in aqueous solution.
نویسندگان
چکیده
In this study titanium dioxide nanotube (TNT) arrays were prepared by an anodic oxidation process with post-calcination. The morphology and structure of the TNT films were studied by field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Photocatalytic activity of the TNT films was evaluated in terms of the degradation of 2,3-dichlorophenol in aqueous solution under UV light irradiation. The effects of the nanotube structure including tube length and tube wall thickness, and crystallinity on the photocatalytic activity were investigated in detail. The results showed that the large specific surface area, high pore volume, thin tube wall, and optimal tube length would be important factors to achieve the good performance of TNT films. Moreover, the TNT films calcined at 500 degrees C for 1h with the higher degree of crystallinity exhibited the higher photocatalytic activity than other TNT films calcined at 300 and 800 degrees C. Consequently, these results indicate that the optimization of TiO(2) nanotube structures is critical to achieve the high performance of photocatalytic reaction.
منابع مشابه
Effects of dissolved oxygen, pH, and anions on the 2,3-dichlorophenol degradation by photocatalytic reaction with anodic TiO(2) nanotube films.
In this study, the highly-ordered TiO(2) nanotube (TNT) arrays on titanium sheets were prepared by an anodic oxidation method. Under UV illumination, the TNT films demonstrated the higher photocatalytic activity in terms of 2,3-dichlorophenol (2,3-DCP) degradation in aqueous solution than the conventional TiO(2) thin films prepared by a sol-gel method. The effects of dissolved oxygen (DO) and p...
متن کاملA strategy for degradation of 2,5-dichlorophenol using its photoelectrocatalytic oxidation on the TiO2/Ti thin film electrode
In this work, the photoelectrocatalytic (PEC) degradation of 2,5-dichlorophenol can be used for its removal from aqueous solution. To study this activity, a TiO2 thin film modified titanium sheet (TiO2/Ti) was fabricated by anodizing Ti plates using a two electrode system under the constant bias voltage of 20 V for 20 min in a solution of 0.2% (v/v) HF followed by calcinat...
متن کاملSunlight-driven efficient photocatalytic and antimicrobial studies of microwave-assisted Ir-doped TiO2 nanoparticles for environmental safety
A simple, low-cost and an eco-friendly synthesis of Ir-doped titanium dioxide nanoparticles (TiO2 NPs) with an anatase phase by the microwave-assisted method using an aqueous solution of titanium tetra-isopropoxide (TTIP) and iridium (III) chloride monohydrate.<span class="CharOverride...
متن کاملFabrication of open-ended high aspect-ratio anodic TiO2 nanotube films for photocatalytic and photoelectrocatalytic applications.
A facile process is introduced to flake high aspect-ratio anodic TiO(2) nanotube (TiNT) arrays off Ti substrates and then chemically remove the bottom caps to obtain open-ended TiNT films that exhibit high activity to photocatalytic degradation of methylene blue and efficient hydrogen production from photoelectrocatalytic water splitting.
متن کاملNano Sized Ni/TiO2 @ NaX Zeolite with Enhanced Photocatalytic Activity
Nickel doped TiO2nano particles (1% w/w) were prepared and immobilized on NaX zeolite and after characterization by X-ray diffraction and scanning electron microscopy used as photo catalyts for degradation of orange G. The X-ray diffraction patterns show that the supported TiO2 are crystallized in anatase form and the intensity of the zeolite peaks decreases with the incre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of hazardous materials
دوره 162 2-3 شماره
صفحات -
تاریخ انتشار 2009